
© 2015 Nexedi

wendelin.core
effortless out-of-core NumPy

2014-04-03 – Paris

© 2015 Nexedi

Who am I?

● Kirill Smelkov
● Senior developer at Nexedi
● Author of wendelin.core
● Contributor to linux, git and scientific libraries

from time to time
● kirr@nexedi.com

© 2015 Nexedi

Agenda

● Where do we come from
● Five problems to solves
● The solution
● Future Roadmap

© 2015 Nexedi

Where do we come from?

© 2015 Nexedi

Nexedi

● Possibly Largest OSS Publisher in Europe
– ERP5: ERP, CRM, ECM, e-business framework

– SlapOS: distributed mesh cloud operation system

– NEO: distributed transactional NoSQL database

– Wendelin: out-of-core big data based on NumPy

– re6st: resilient IPv6 mesh overlay network

– RenderJS: javascript component system

– JIO: javascript virtual database and virtual filesystem

– cloudooo: multimedia conversion server

– Web Runner: web based Platform-as-a-Service (PaaS) and IDE

– OfficeJS: web office suite based on RenderJS and JIO

© 2015 Nexedi

© 2015 Nexedi

+

?

Application Convergence

© 2015 Nexedi

Application

ERP5 Storage: NEO

© 2015 Nexedi

Standard Hardware no router / no SAN

– 2 x 10 Gbps
– 2 x 6 core Xeon CPU
– 512 GB RAM
– 4 x 1 TB SSD
– 1 x M2090 GPU

x 160

x 32

+

+

x 320

– 10 Gbps
– Unmanaged

© 2015 Nexedi

Five Problems to Solve

© 2015 Nexedi

It is All About NumPy

© 2015 Nexedi

Problem 1: Persistent NumPy

● How to store NumPy arrays in a database?
– in NEO?

– in NoSQL?

– in SQL?

© 2015 Nexedi

Problem 2: Distributed NumPy

● How to share NumPy arrays in a cluster?
– One PC, many Python processes

– Many PC, many Python processes

© 2015 Nexedi

Problem 3: Out-of-core NumPy

● How to load big NumPy arrays in small RAM?
– ERP5: “it should work even if it does not work”

– Stopping business is not an option
(because of not enough RAM)

© 2015 Nexedi

Problem 4: Transactional NumPy

● How to make NumPy arrays transaction safe?
– Exception handling

– Concurrent writes

– Distributed computing

© 2015 Nexedi

Problem 5: Compatibility

● Compatibility with NumPy-based stack is a must
● Native BLAS support is a must
● Cython/FORTRAN/C/C++ support is a must
● Code rewrite is not an option

– Blaze: not NumPy compatible below Python level

– Dato: not NumPy compatible

© 2015 Nexedi

The Solution

© 2015 Nexedi

Unsolutions

● Update NumPy & libraries with calling
notification hooks when memory is changed
→ not practical

– There is a lot of code in numpy and lot of libraries around numpy

– Catching them all would be a huge task

● Compare array data to original array content at
commit time and store only found-to-be-
changed parts → not good

– At every commit whole array data has to be read/analyzed and
array data can be very big

© 2015 Nexedi

Remember mmap? READ

● Region of memory mapped by kernel to a file
● Memory pages start with NONE protection

→ CPU can not read nor write
● Whenever read request comes from CPU,

kernel traps it (thanks to MMU), loads content
for that page from file, and resumes original
read

© 2015 Nexedi

Remember mmap? WRITE

● Whenever write request comes from CPU,
kernel traps it, marks the page as DIRTY,
unprotects it and resumes original write
→ kernel knows which pages were modified

● Whenever application wants to make sure
modified data is stored back to file (msync),
kernel goes over list of dirty pages and writes
their content back to file

© 2015 Nexedi

Partial Conclusion

● If we manage to represent arrays as files, we'll
get “track-changes-to-content” from kernel

© 2015 Nexedi

FUSE ?

● FUSE & virtual filesystem representing "glued"
arrays from ZODB BTree & objects

● Problem 1: does not work with huge pages
– Performance issues

– Not easy to fix

● Problem 2: no support for commit / abort
– Transaction issues

© 2015 Nexedi

UVMM: Userspace Virtual Memory Manager

● Trap write access to memory via installing
SIGSEGV signal handler

© 2015 Nexedi

UVMM ON CPU WRITE

● SIGSEGV handler gets notified,
● Marks corresponding array block as dirty
● Adjust memory protection to be read-write
● Resumes write instruction
● → we know which array parts were modified

© 2015 Nexedi

UVMM ON CPU READ

● Set pages initial protection to PROT_NONE
→ no-read and no-write

● First load in SIGSEGV handler
● When RAM is tight, we can "forget" already

loaded (but not-yet modified) memory parts and
free RAM for loading new data

© 2015 Nexedi

UVMM LIMITS ?

● Array size is only limited by virtual memory
address space size
→ 127TB on Linux/amd64 (today)

● Future Linux kernel may support more

© 2015 Nexedi

Is it safe to do work in SIGSEGV handler?

● Short answer: YES
● Long answer: www.wendelin.io

© 2015 Nexedi

from wendelin.bigfile import BigFile

bigfile with data storage in 'some backend'
class BigFile_SomeBackend(BigFile):
 .blksize = … # file is stored in block of size

 def loadblk(self, blk, buf) # load file block #blk to memory buffer `buf`

 def storeblk(self, blk, buf) # store data from memory buffer `buf` to file
 # block blk

f = BigFile_SomeBackend(...)

Tutorial: init a BigFile backend

© 2015 Nexedi

 # BigFile handle is a representation of file snapshot that could be locally
 # modified in-memory. The changes could be later either discarded or stored
 # back to file. One file can have many opened handles each with its own
 # modifications.
 fh = f.fileh_open()

 # memory mapping of fh
 vma = fh.mmap(pgoffset=0, pglen=N)

 # vma exposes memoryview/buffer interfaces
 mem = memoryview(vma)

 # now we can do with `mem` whatever we like
 ...

 fh.dirty_discard() # to forget all changes done to `mem` memory
 fh.dirty_writeout(...) # to store changes back to file

BigFile Handle: BigFile as Memory

© 2015 Nexedi

 from webdelin.bigfile.file_zodb import ZBigFile
 import transaction

 f = ZBigFile() # create anew
 f = root['...'].some.object # load saved state from database

 # the same as with plain BigFile (previous example)
 fh = fileh_open()
 vma = fh.mmap(0, N)
 mem = memoryview(vma)

 # we can also modify other objects living in ZODB

 transaction.abort() # to abort all changes to mem and other objects
 transaction.commit() # to commit all changes to mem and other objects

ZBigFile: ZODB & Transactions

© 2015 Nexedi

f - some BigFile
n - some (large) number
fh = f.fileh_open() # handle to bigfile (see slide ...)
A = BigArray(shape=(n,10), dtype=uint32, fh)

a = A[0:3*(1<<30), :] # real ndarray viewing first 3 giga-rows (= ~120GB) of
 # data from f
 # NOTE 120GB can be significantly > of RAM available

a.mean() # computes mean of items in above range
 # this call is just an ndarray.mean() call and code
 # which works is the code in NumPy.
 # NOTE data will be loaded and freed by virtual memory
 # manager transparently to client code which computes
 # the mean

BigArray: “ndarray” on top of BigFile

© 2015 Nexedi

 a[2] = ...
 ...
 fh.dirty_discard() # to discard, or
 fh.dirty_writeout() # to write

BigArray: Transactions

© 2015 Nexedi

 from wendelin.bigarra.array_zodb import ZbigArray
 import transaction

 # root is connection to oped database
 root['sensor_data'] = A = ZBigArray(shape=..., dtype=...)

 # populate A with data
 A[2] = 1

 # compute mean
 A.mean()

 # abort / commit changes
 transaction.abort()
 transaction.commit()

ZBigArray: ZODB & Transactions

© 2015 Nexedi

NEO and ZBigArray

ZBigArray

1 2 3 4 5 6 7 8 9 10 11 12

5

9

6

10

7

11

1 2 3 4

8

12

© 2015 Nexedi

Future Improvements

● Temporary arrays created by NumPy libraries
● Performance
● Multithreading

© 2015 Nexedi

Future Roadmap

© 2015 Nexedi

Roadmap
● Make wendelin.core fast

– userfaultfd, filesystem-based approach

– remove use of pickles

– remove large temporary arrays in NumPy, etc.

● Yet, you can start using wendelin.core now!
Persistent

Distributed

Out-of-core

Transactional

Virtually no change to your code needed

Open Source

www.wendelin.io

© 2015 Nexedi

wendelin.core
effortless out-of-core NumPy

2014-04-03 – Paris

www.wendelin.io

© 2015 Nexedi

wendelin.core
effortless out-of-core NumPy

2014-04-03 – Paris

© 2015 Nexedi

Who am I?

● Kirill Smelkov
● Senior developer at Nexedi
● Author of wendelin.core
● Contributor to linux, git and scientific libraries

from time to time
● kirr@nexedi.com

© 2015 Nexedi

Agenda

● Where do we come from
● Five problems to solves
● The solution
● Future Roadmap

© 2015 Nexedi

Where do we come from?

© 2015 Nexedi

Nexedi

● Possibly Largest OSS Publisher in Europe
– ERP5: ERP, CRM, ECM, e-business framework

– SlapOS: distributed mesh cloud operation system

– NEO: distributed transactional NoSQL database

– Wendelin: out-of-core big data based on NumPy

– re6st: resilient IPv6 mesh overlay network

– RenderJS: javascript component system

– JIO: javascript virtual database and virtual filesystem

– cloudooo: multimedia conversion server

– Web Runner: web based Platform-as-a-Service (PaaS) and IDE

– OfficeJS: web office suite based on RenderJS and JIO

© 2015 Nexedi

© 2015 Nexedi

+

?

Application Convergence

© 2015 Nexedi

Five Problems to Solve

© 2015 Nexedi

It is All About NumPy

© 2015 Nexedi

Problem 1: Persistent NumPy

● How to store NumPy arrays in a database?
– in NEO?

– in NoSQL?

– in SQL?

© 2015 Nexedi

Problem 2: Distributed NumPy

● How to share NumPy arrays in a cluster?
– One PC, many Python processes

– Many PC, many Python processes

© 2015 Nexedi

Problem 3: Out-of-core NumPy

● How to load big NumPy arrays in small RAM?
– ERP5: “it should work even if it does not work”

– Stopping business is not an option
(because of not enough RAM)

© 2015 Nexedi

Problem 4: Transactional NumPy

● How to make NumPy arrays transaction safe?
– Exception handling

– Concurrent writes

– Distributed computing

© 2015 Nexedi

Problem 5: Compatibility

● Compatibility with NumPy-based stack is a must
● Native BLAS support is a must
● Cython/FORTRAN/C/C++ support is a must
● Code rewrite is not an option

– Blaze: not NumPy compatible below Python level

– Dato: not NumPy compatible

© 2015 Nexedi

The Solution

© 2015 Nexedi

Unsolutions

● Update NumPy & libraries with calling
notification hooks when memory is changed
→ not practical

– There is a lot of code in numpy and lot of libraries around numpy

– Catching them all would be a huge task

● Compare array data to original array content at
commit time and store only found-to-be-
changed parts → not good

– At every commit whole array data has to be read/analyzed and
array data can be very big

© 2015 Nexedi

Remember mmap? READ

● Region of memory mapped by kernel to a file
● Memory pages start with NONE protection

→ CPU can not read nor write
● Whenever read request comes from CPU,

kernel traps it (thanks to MMU), loads content
for that page from file, and resumes original
read

© 2015 Nexedi

Remember mmap? WRITE

● Whenever write request comes from CPU,
kernel traps it, marks the page as DIRTY,
unprotects it and resumes original write
→ kernel knows which pages were modified

● Whenever application wants to make sure
modified data is stored back to file (msync),
kernel goes over list of dirty pages and writes
their content back to file

© 2015 Nexedi

Partial Conclusion

● If we manage to represent arrays as files, we'll
get “track-changes-to-content” from kernel

© 2015 Nexedi

FUSE ?

● FUSE & virtual filesystem representing "glued"
arrays from ZODB BTree & objects

● Problem 1: does not work with huge pages
– Performance issues

– Not easy to fix

● Problem 2: no support for commit / abort
– Transaction issues

© 2015 Nexedi

UVMM: Userspace Virtual Memory Manager

● Trap write access to memory via installing
SIGSEGV signal handler

© 2015 Nexedi

UVMM ON CPU WRITE

● SIGSEGV handler gets notified,
● Marks corresponding array block as dirty
● Adjust memory protection to be read-write
● Resumes write instruction
● → we know which array parts were modified

© 2015 Nexedi

UVMM ON CPU READ

● Set pages initial protection to PROT_NONE
→ no-read and no-write

● First load in SIGSEGV handler
● When RAM is tight, we can "forget" already

loaded (but not-yet modified) memory parts and
free RAM for loading new data

© 2015 Nexedi

UVMM LIMITS ?

● Array size is only limited by virtual memory
address space size
→ 127TB on Linux/amd64 (today)

● Future Linux kernel may support more

© 2015 Nexedi

Is it safe to do work in SIGSEGV handler?

● Short answer: YES
● Long answer: www.wendelin.io

© 2015 Nexedi

from wendelin.bigfile import BigFile

bigfile with data storage in 'some backend'
class BigFile_SomeBackend(BigFile):
 .blksize = … # file is stored in block of size

 def loadblk(self, blk, buf) # load file block #blk to memory buffer `buf`

 def storeblk(self, blk, buf) # store data from memory buffer `buf` to file
 # block blk

f = BigFile_SomeBackend(...)

Tutorial: init a BigFile backend

© 2015 Nexedi

 # BigFile handle is a representation of file snapshot that could be locally
 # modified in-memory. The changes could be later either discarded or stored
 # back to file. One file can have many opened handles each with its own
 # modifications.
 fh = f.fileh_open()

 # memory mapping of fh
 vma = fh.mmap(pgoffset=0, pglen=N)

 # vma exposes memoryview/buffer interfaces
 mem = memoryview(vma)

 # now we can do with `mem` whatever we like
 ...

 fh.dirty_discard() # to forget all changes done to `mem` memory
 fh.dirty_writeout(...) # to store changes back to file

BigFile Handle: BigFile as Memory

© 2015 Nexedi

 from webdelin.bigfile.file_zodb import ZBigFile
 import transaction

 f = ZBigFile() # create anew
 f = root['...'].some.object # load saved state from database

 # the same as with plain BigFile (previous example)
 fh = fileh_open()
 vma = fh.mmap(0, N)
 mem = memoryview(vma)

 # we can also modify other objects living in ZODB

 transaction.abort() # to abort all changes to mem and other objects
 transaction.commit() # to commit all changes to mem and other objects

ZBigFile: ZODB & Transactions

© 2015 Nexedi

f - some BigFile
n - some (large) number
fh = f.fileh_open() # handle to bigfile (see slide ...)
A = BigArray(shape=(n,10), dtype=uint32, fh)

a = A[0:3*(1<<30), :] # real ndarray viewing first 3 giga-rows (= ~120GB) of
 # data from f
 # NOTE 120GB can be significantly > of RAM available

a.mean() # computes mean of items in above range
 # this call is just an ndarray.mean() call and code
 # which works is the code in NumPy.
 # NOTE data will be loaded and freed by virtual memory
 # manager transparently to client code which computes
 # the mean

BigArray: “ndarray” on top of BigFile

© 2015 Nexedi

 a[2] = ...
 ...
 fh.dirty_discard() # to discard, or
 fh.dirty_writeout() # to write

BigArray: Transactions

© 2015 Nexedi

 from wendelin.bigarra.array_zodb import ZbigArray
 import transaction

 # root is connection to oped database
 root['sensor_data'] = A = ZBigArray(shape=..., dtype=...)

 # populate A with data
 A[2] = 1

 # compute mean
 A.mean()

 # abort / commit changes
 transaction.abort()
 transaction.commit()

ZBigArray: ZODB & Transactions

© 2015 Nexedi

NEO and ZBigArray

ZBigArray

1 2 3 4 5 6 7 8 9 10 11 12

5

9

6

10

7

11

1 2 3 4

8

12

© 2015 Nexedi

Future Improvements

● Temporary arrays created by NumPy libraries
● Performance
● Multithreading

© 2015 Nexedi

Future Roadmap

© 2015 Nexedi

wendelin.core
effortless out-of-core NumPy

2014-04-03 – Paris

www.wendelin.io

	Slide 1
	Slide 2
	Agenda
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 1
	Slide 2
	Agenda
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

