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Who am I?

● Kirill Smelkov
● Senior developer at Nexedi
● Author of wendelin.core
● Contributor to linux, git and scientific libraries 

from time to time
● kirr@nexedi.com
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Agenda

● Where do we come from
● Five problems to solves
● The solution
● Future Roadmap
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Nexedi

● Possibly Largest OSS Publisher in Europe
– ERP5: ERP, CRM, ECM, e-business framework

– SlapOS: distributed mesh cloud operation system

– NEO: distributed transactional NoSQL database

– Wendelin: out-of-core big data based on NumPy

– re6st: resilient IPv6 mesh overlay network

– RenderJS: javascript component system

– JIO: javascript virtual database and virtual filesystem

– cloudooo: multimedia conversion server

– Web Runner: web based Platform-as-a-Service (PaaS) and IDE

– OfficeJS: web office suite based on RenderJS and JIO
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Application

ERP5 Storage: NEO
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Standard Hardware no router / no SAN

– 2 x 10 Gbps
– 2 x 6 core Xeon CPU
– 512 GB RAM
– 4 x 1 TB SSD
– 1 x M2090 GPU

x 160

x 32

+

+

x 320

– 10 Gbps
– Unmanaged
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Five Problems to Solve



© 2015 Nexedi

It is All About NumPy
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Problem 1: Persistent NumPy

● How to store NumPy arrays in a database?
– in NEO?

– in NoSQL?

– in SQL?
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Problem 2: Distributed NumPy

● How to share NumPy arrays in a cluster?
– One PC, many Python processes

– Many PC, many Python processes
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Problem 3: Out-of-core NumPy

● How to load big NumPy arrays in small RAM?
– ERP5: “it should work even if it does not work”

– Stopping business is not an option
(because of not enough RAM)
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Problem 4: Transactional NumPy

● How to make NumPy arrays transaction safe?
– Exception handling

– Concurrent writes

– Distributed computing
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Problem 5: Compatibility

● Compatibility with NumPy-based stack is a must
● Native BLAS support is a must
● Cython/FORTRAN/C/C++ support is a must
● Code rewrite is not an option

– Blaze: not NumPy compatible below Python level

– Dato: not NumPy compatible
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The Solution
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Unsolutions

● Update NumPy & libraries with calling 
notification hooks when memory is changed 
→ not practical

– There is a lot of code in numpy and lot of libraries around numpy

– Catching them all would be a huge task

● Compare array data to original array content at 
commit time and store only found-to-be-
changed parts → not good

– At every commit whole array data has to be read/analyzed and 
array data can be very big
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Remember mmap? READ

● Region of memory mapped by kernel to a file
● Memory pages start with NONE protection

→ CPU can not read nor write
● Whenever read request comes from CPU, 

kernel traps it (thanks to MMU), loads content 
for that page from file, and resumes original 
read
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Remember mmap? WRITE

● Whenever write request comes from CPU, 
kernel traps it, marks the page as DIRTY, 
unprotects it and resumes original write
→ kernel knows which pages were modified

● Whenever application wants to make sure 
modified data is stored back to file (msync), 
kernel goes over list of dirty pages and writes 
their content back to file
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Partial Conclusion

● If we manage to represent arrays as files, we'll 
get “track-changes-to-content” from kernel 
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FUSE ?

● FUSE & virtual filesystem representing "glued" 
arrays from ZODB BTree & objects

● Problem 1: does not work with huge pages
– Performance issues

– Not easy to fix

● Problem 2: no support for commit / abort
– Transaction issues
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UVMM: Userspace Virtual Memory Manager

● Trap write access to memory via installing 
SIGSEGV signal handler
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UVMM ON CPU WRITE

● SIGSEGV handler gets notified,
● Marks corresponding array block as dirty
● Adjust memory protection to be read-write
● Resumes write instruction
● → we know which array parts were modified
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UVMM ON CPU READ

● Set pages initial protection to PROT_NONE 
→ no-read and no-write

● First load in SIGSEGV handler
● When RAM is tight, we can "forget" already 

loaded (but not-yet modified) memory parts and 
free RAM for loading new data
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UVMM LIMITS ?

● Array size is only limited by virtual memory 
address space size
→ 127TB on Linux/amd64 (today)

● Future Linux kernel may support more
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Is it safe to do work in SIGSEGV handler?

● Short answer: YES
● Long answer: www.wendelin.io
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from wendelin.bigfile import BigFile

# bigfile with data storage in 'some backend'
class BigFile_SomeBackend(BigFile):
    .blksize = …                 # file is stored in block of size

    def loadblk(self, blk, buf)  # load file block #blk to memory buffer `buf`

    def storeblk(self, blk, buf) # store data from memory buffer `buf` to file
                                 # block blk

f  = BigFile_SomeBackend(...)

Tutorial: init a BigFile backend
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    # BigFile handle is a representation of file snapshot that could be locally
    # modified in-memory. The changes could be later either discarded or stored
    # back to file. One file can have many opened handles each with its own
    # modifications.
    fh = f.fileh_open()

    # memory mapping of fh
    vma = fh.mmap(pgoffset=0, pglen=N)

    # vma exposes memoryview/buffer interfaces
    mem = memoryview(vma)

    # now we can do with `mem` whatever we like
    ...

    fh.dirty_discard()      # to forget all changes done to `mem` memory
    fh.dirty_writeout(...)  # to store changes back to file

BigFile Handle: BigFile as Memory
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    from webdelin.bigfile.file_zodb import ZBigFile
    import transaction

    f  = ZBigFile()                 # create anew
    f  = root['...'].some.object    # load saved state from database

    # the same as with plain BigFile (previous example)
    fh = fileh_open()
    vma = fh.mmap(0, N)
    mem = memoryview(vma)

    # we can also modify other objects living in ZODB

    transaction.abort()     # to abort all changes to mem and other objects
    transaction.commit()    # to commit all changes to mem and other objects

ZBigFile: ZODB & Transactions
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# f - some BigFile
# n - some (large) number
fh = f.fileh_open()     # handle to bigfile (see slide ...)
A  = BigArray(shape=(n,10), dtype=uint32, fh)

a  = A[0:3*(1<<30), :]  # real ndarray viewing first 3 giga-rows (= ~120GB) of 
                        # data from f
                        # NOTE 120GB can be significantly > of RAM available

a.mean()                # computes mean of items in above range
                        # this call is just an ndarray.mean() call and code  
                        # which works is the code in NumPy.
                        # NOTE data will be loaded and freed by virtual memory 
                        # manager transparently to client code which computes 
                        # the mean

BigArray: “ndarray” on top of BigFile
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        a[2] = ...
        ...
        fh.dirty_discard()      # to discard, or
        fh.dirty_writeout()     # to write

BigArray: Transactions
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        from wendelin.bigarra.array_zodb import ZbigArray
        import transaction

        # root is connection to oped database
        root['sensor_data'] = A = ZBigArray(shape=..., dtype=...)

        # populate A with data
        A[2] = 1

        # compute mean
        A.mean()

        # abort / commit changes
        transaction.abort()
        transaction.commit()

ZBigArray: ZODB & Transactions
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NEO and ZBigArray

ZBigArray
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Future Improvements

● Temporary arrays created by NumPy libraries
● Performance
● Multithreading
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Future Roadmap
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Roadmap
● Make wendelin.core fast

– userfaultfd, filesystem-based approach

– remove use of pickles

– remove large temporary arrays in NumPy, etc.

● Yet, you can start using wendelin.core now!
Persistent

Distributed

Out-of-core

Transactional

Virtually no change to your code needed

Open Source

www.wendelin.io
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● How to store NumPy arrays in a database?
– in NEO?
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● How to load big NumPy arrays in small RAM?
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Problem 4: Transactional NumPy
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Unsolutions

● Update NumPy & libraries with calling 
notification hooks when memory is changed 
→ not practical

– There is a lot of code in numpy and lot of libraries around numpy

– Catching them all would be a huge task

● Compare array data to original array content at 
commit time and store only found-to-be-
changed parts → not good

– At every commit whole array data has to be read/analyzed and 
array data can be very big
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Remember mmap? READ

● Region of memory mapped by kernel to a file
● Memory pages start with NONE protection

→ CPU can not read nor write
● Whenever read request comes from CPU, 

kernel traps it (thanks to MMU), loads content 
for that page from file, and resumes original 
read
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Remember mmap? WRITE

● Whenever write request comes from CPU, 
kernel traps it, marks the page as DIRTY, 
unprotects it and resumes original write
→ kernel knows which pages were modified

● Whenever application wants to make sure 
modified data is stored back to file (msync), 
kernel goes over list of dirty pages and writes 
their content back to file
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● If we manage to represent arrays as files, we'll 
get “track-changes-to-content” from kernel 
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– Not easy to fix

● Problem 2: no support for commit / abort
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UVMM: Userspace Virtual Memory Manager

● Trap write access to memory via installing 
SIGSEGV signal handler
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UVMM ON CPU WRITE

● SIGSEGV handler gets notified,
● Marks corresponding array block as dirty
● Adjust memory protection to be read-write
● Resumes write instruction
● → we know which array parts were modified
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UVMM ON CPU READ

● Set pages initial protection to PROT_NONE 
→ no-read and no-write

● First load in SIGSEGV handler
● When RAM is tight, we can "forget" already 

loaded (but not-yet modified) memory parts and 
free RAM for loading new data
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● Array size is only limited by virtual memory 
address space size
→ 127TB on Linux/amd64 (today)

● Future Linux kernel may support more
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Is it safe to do work in SIGSEGV handler?

● Short answer: YES
● Long answer: www.wendelin.io
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from wendelin.bigfile import BigFile

# bigfile with data storage in 'some backend'
class BigFile_SomeBackend(BigFile):
    .blksize = …                 # file is stored in block of size

    def loadblk(self, blk, buf)  # load file block #blk to memory buffer `buf`

    def storeblk(self, blk, buf) # store data from memory buffer `buf` to file
                                 # block blk

f  = BigFile_SomeBackend(...)

Tutorial: init a BigFile backend
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    # BigFile handle is a representation of file snapshot that could be locally
    # modified in-memory. The changes could be later either discarded or stored
    # back to file. One file can have many opened handles each with its own
    # modifications.
    fh = f.fileh_open()

    # memory mapping of fh
    vma = fh.mmap(pgoffset=0, pglen=N)

    # vma exposes memoryview/buffer interfaces
    mem = memoryview(vma)

    # now we can do with `mem` whatever we like
    ...

    fh.dirty_discard()      # to forget all changes done to `mem` memory
    fh.dirty_writeout(...)  # to store changes back to file

BigFile Handle: BigFile as Memory
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    from webdelin.bigfile.file_zodb import ZBigFile
    import transaction

    f  = ZBigFile()                 # create anew
    f  = root['...'].some.object    # load saved state from database

    # the same as with plain BigFile (previous example)
    fh = fileh_open()
    vma = fh.mmap(0, N)
    mem = memoryview(vma)

    # we can also modify other objects living in ZODB

    transaction.abort()     # to abort all changes to mem and other objects
    transaction.commit()    # to commit all changes to mem and other objects

ZBigFile: ZODB & Transactions
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# f - some BigFile
# n - some (large) number
fh = f.fileh_open()     # handle to bigfile (see slide ...)
A  = BigArray(shape=(n,10), dtype=uint32, fh)

a  = A[0:3*(1<<30), :]  # real ndarray viewing first 3 giga-rows (= ~120GB) of 
                        # data from f
                        # NOTE 120GB can be significantly > of RAM available

a.mean()                # computes mean of items in above range
                        # this call is just an ndarray.mean() call and code  
                        # which works is the code in NumPy.
                        # NOTE data will be loaded and freed by virtual memory 
                        # manager transparently to client code which computes 
                        # the mean

BigArray: “ndarray” on top of BigFile
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        a[2] = ...
        ...
        fh.dirty_discard()      # to discard, or
        fh.dirty_writeout()     # to write

BigArray: Transactions



© 2015 Nexedi

        from wendelin.bigarra.array_zodb import ZbigArray
        import transaction

        # root is connection to oped database
        root['sensor_data'] = A = ZBigArray(shape=..., dtype=...)

        # populate A with data
        A[2] = 1

        # compute mean
        A.mean()

        # abort / commit changes
        transaction.abort()
        transaction.commit()

ZBigArray: ZODB & Transactions
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NEO and ZBigArray

ZBigArray
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Future Improvements

● Temporary arrays created by NumPy libraries
● Performance
● Multithreading
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